SEE laser testing using two-photon absorption:

Modeling of charge deposition

Vincent Pouget

CNRS IES Lab, Univ. Montpellier RADIAC group

vincent.pouget@ies.univ-montp2.fr

Contributors at IMS lab, Univ. Bordeaux

D. Wan, P. Jaulent, K. Shao, E. Faraud, A. Morisset, F. Darracq, P. Fouillat, D. Lewis

Context & motivations

Modeling of laser testing

- Charge deposition profile for TCAD analysis
- Estimation of equivalent laser LET for adjusting experimental parameters

Single-photon absorption technique

- Model of charge deposition: simple or advanced models available
- Equivalent laser LET
 - Theoretical models available
 - Many empirical results available
 - Strongly dependent on optical parameters (wavelength, pulse duration...)

Two-photon absorption

- Model of charge deposition: only basic models available
- Equivalent laser LET
 - □ A few empirical results available (Schwank et al, IEEE TNS 2011)
- Impact of complex nonlinear effects on 3D resolution ?

\Rightarrow Development of a realistic model of TPA-induced charge deposition

Contributions:

- P. Jaulent, PhD Thesis, Univ. Bordeaux, 2008
- K. Shao, PhD Thesis, Univ. Bordeaux, 2011
- A. Morisset, PhD Thesis, Univ. Bordeaux, 2012

Principles of two-photon absorption (TPA)

□ Basic model of TPA-induced charge deposition

Linear and nonlinear effects

□ Advanced modeling of TPA-induced charge

- Principles
- Preliminary results

Conclusions

Single- vs Two-photon absorption

Two-photon absorption

Nonlinear process

□ Charge generation rate varies quadratically with laser intensity

$$G(\mathbf{r},t) \propto \beta \frac{I(\mathbf{r},t)^2}{2\hbar\omega}$$

Condition on photon energy

Smaller than band-gap, else linear (single photon) absorption will always dominate

□ Higher than half the band-gap

Condition on intensity

□ Low probability mechanism: $\beta \approx 1 cm/GW$

□ High intensity required for significant charge generation: small spot, short pulse (fs)

TPA pros and cons
\Box Lateral resolution improved by $\sqrt{2}$
Axial resolution = access to 3D resolution
 Requires femtosecond pulses Laser source cost
 Quadratically sensitive to uncontrolled intensity variations Energy stability Spot size variations Backside quality of the sample
 More sensitive than SPA to focus variations Not the first choice for scanning large areas

Basic models

□ First order approach

- Consider that absorption is negligible
- Calculate intensity distribution in the absence of material interaction

$$\Box \quad G(\mathbf{r},t) \propto \beta \frac{I(\mathbf{r},t)^2}{2\hbar\omega}$$

Plane wave approach

$$\frac{dI}{dz} = -\alpha I - \beta_2 I^2$$

$$I(z) = I_0 \frac{e^{-\alpha z}}{1 + \frac{\beta_2 I_0}{\alpha} \left(1 - e^{-\alpha z}\right)}$$

McMorrow et al, IEEE TNS 49, 6, 2002

Both approaches can not account for real laser-silicon interaction processes

Applications of TPA laser testing

□ Same applications as SPA

+

- □ 3D « sensitive volume » characterization
 - SET in LM324 op amp
 - SEB in Power MOSFETs
 - SEL in 130nm SRAM

Optical propagation mechanisms to consider

Static free carriers absorption

Beam attenuation through the bulk

Depletion

Beam attenuation around the focus if significant two-photon absorption

Kerr effect

- Refraction index variation with intensity
- Radial profile of intensity can lead to self focusing, filamentation, destruction...
- Time profile of intensity can lead to phase modulation

Plasma effect

Carriers generated by the front of the pulse can affect both the refractive index and the absorption coefficient

These effects may have an impact on:

- Radial profile: spot size, lateral resolution
- Axial profile: axial spot extension, axial resolution
- Time profile (assumed to be negigible)
- Amount of generated charge

Kerr and Plasma effects on focusing

□ Which effect is predominant ? Do they compensate each other ?

□ Is there a threshold energy at which those effects become non negligible ?

Modeling options

□ Analytic (closed form) model

- □ Starting from Maxwell equations
- □ No analytic solution in the general case of nonlinear propagation

Finite Element method

- □ Finite Difference in Time Domain (FDTD)
- Maxwell equations resolved by discretizing space and time
- To date: available open source and commercial tools do not deal correctly with nonlinear propagation
- Some results with proprietary two-temperature FDTD model (Bogatyrev et al, J. Appl. Phys., 2011)
- □ Time and computation ressources required

Intermediate solution: iterative numerical model

- □ Main assumption: the beam remains Gaussian
- Discretization of space and time
- Iterative propagation of the Gaussian enveloppe in space and time using analytic equations and complex ABCD matrices

Iterative numerical model

Principles

- □ Time and optical axis (substrate thickness) discretized into slices
- Each time slice of the Gaussian pulse is propagated through all the substrate slices, calculating charge generation
- Gaussian radial profile calculated in each substrate slice using complex ABCD transport matrices, taking into account charge generated at previous times

Included effects

- Static free carrier absorption
- Depletion
- Kerr effect on radial profile
- Plasma effect
- Phase modulation not included in the model
- Material optical properties and laws taken from the literature
- Provides intensity and charge distribution vs space and time
- Implemented in C++ and Matlab
- □ First sets of results, refinements in progress

- Wavelength: 1.3µm
- Pulse duration: 100fs
- Substrate doping: 10¹⁸ cm⁻³

SPA vs TPA

Equivalent LET

Not to be taken as an absolute value, but it provides a practical way of quantifying the influence of experimental parameters on charge deposition

Equivalent LET vs Energy

- Propagation mechanisms competition in range of interest
- Kerr effect limits the accessible range of very high LET that are commonly achieved with SPA

Effect of substrate thickness

Significant contribution of plasma effect in thick substrates reduces the equivalent LET

Effect of LET box thickness

- Effect induced by rapid axial variations of the charge profile in the focus region
- Effect more important for thin substrate because mainly related Kerr effect
- Charge deposition almost homogeneous along 5µm within the LET range of interest

Conclusions

- □ A new numerical model of charge deposition by TPA laser testing
- Some progress towards a better quantification of charge injection with the TPA technique
- Several propagation mechanisms compete within the energy range of interest for TPA testing
- □ The model allows quantifying axial spot displacement vs energy
- Model refinements and optimization in progress