

Single Event Effects in Al_{1-x}Ga_xN/GaN HEMTs

Stephen Buchner, Ani Khachatrian, Nicolas Roche, Jeffrey Warner and Dale McMorrow

Naval Research Laboratory, Washington DC

Introduction GaN HEMT

- Material structure
 - Hexagonal (Wurzite)
 - Polar in (0001) direction
 - Ga and N form layers
- $E_g = 3.4 \text{ eV}$
- $E(crit) = 3x10^{6} V/cm$
- $\mu_e = 900 \text{ cm}^2/\text{V.s}$
- High temperature operation.
- 2D electron gas without doping.
- Small footprint makes it attractive for space

200V Silicon Device (30 milli Ohms) 200 V eGaN FET (25 milli Ohms)

U.S. NAVAL RESEARCH

SETs From Four Radiation Sources

U.S. NAVAL RESEARCH LABORATORY

Presented by S. Buchner at JEDEC Columbus Ohio September 13th 2017

Relative Penetration Depths

- Can pulsed lasers be used to *simulate* SETs generated by heavy ions?
- 2. What are the *mechanisms* responsible for SETs in GaN HEMTs?

3 MeV ⁴He ions and pulsed laser light

Time, ps

- $\delta(1/e)=0.21 \,\mu m$ for $\lambda=620 \,nm$
- Range for He ions = 9.2 μm
- Charge Collection Depth = 0.8 μm

D. McMorrow et al., IEEE TNS, vol. 40, no. 6, pp. 1858-1866, 1993.

10 MeV Ar ions and pulsed laser light

- $\delta(1/e)=1.7 \mu m$ for $\lambda=590 nm$
- $\delta(1/e)$ =676 µm for λ =1064 nm
- Range for Ar ions = $120 \mu m$
- Charge Collection Depth = **19** μm

S. Buchner, et. al., IEEE TNS, vol. 59 (4), pp. 988-998, 2012.

Single-Photon Absorption

- \odot Photon Energy = 4.2 eV (UV)
- \odot Spot size = 0.3 μ m
- \circ Pulse width = 1 ps
- O Short penetration depth in GaN = 200 nm

U.S. NAVAL RESEARCH

Mechanism for SPA Induced SETs

Mechanism for SPA Induced SETs

Mechanism for SPA Induced SETs

SET Analysis to Obtain Trap Lifetimes

U.S. NAVAL RESEARCH LABORATORY

Analysis of SPA SEEs-biased OFF

Analysis of SPA SETs – biased ON

Source has a small but long lasting tail

SET Amplitude Maps – Proton Irradiated

• Vg = 0 V; biased "on"

- The shapes of the transients provide insights into the nature and density of defects
- Analysis of the transients is consistent with traps with lifetimes ranging up to 30 ns
- Consistent with radiation-induced Nitrogen vacancies

Two-Photon Absorption

- o Photon Energy = 1.96 eV (visible)
- \odot Spot size = 1.0 μ m
- \circ Pulse width = 150 fs
- \odot Penetration depth depends on beam optics ~ 6.7 μm

SETs for HEMT Biased OFF

- $\,\circ\,$ Electrons collected at drain
- $\,\circ\,$ Holes collected at gate
- $\,\circ\,$ No signal on source
- Much smaller tail

SETs for HEMT Biased ON

- Electrons collected at drain
- Holes collected at gate and source
- \circ Much longer tail

Thermo-Reflectance Thermography

Thermo-Reflectance Thermography

- Select optimum wavelength for largest DR
- Bias HEMT on so current can flow
- Apply square wave to drain (0V 20 V)
- Measure difference in reflectivity DR
- Calibrate by heating HEMT and measuring DR/R
- Micron resolution for DT

Thermo-Reflectance Thermography

U.S. NAVAL

RESEARCHL LABORATORY

Relationship between TRT and SET

Relationship between TRT and SET

U.S. NAVAL

RESEARCH

Relationship between TRT and SET

U.S. NAVAL RESEARCH LABORATORY

O. Mitrofanov et al, Jour. Appl. Phys. Vol 95 No. 11 (2004)

U.S. NAVAL RESEARCH LABORATORY

- Irradiated GaN HEMT with four different sources – SPA, TPA, X-ray and Focused ion beam
- 2. SETs generated by UV light have long tails due to presence of surface traps.
- 3. An important factor determining SET shape is the penetration depth relative to the charge collection depth.