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Introduction/Outline

• Background 

• TPA Dosimetry

• Modeling Carrier Generation

• Experimental Validation of NLOBPM Model

• Laser/Ion Comparison

• Challenges Moving Forward
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Advantages and Applications of PLSEE

Pulsed-laser SEE is used for:

 Sensitive Node Identification/Mitigation

 SEU Mapping of sensitive areas

 Laser-Induced Latch-up Screening/Mitigation

 Single-Event Transient Characterization and Mitigation 

 Single-Event Transient Screening (ASETs)

 Hardened Circuit Verification

 Dynamic SEE Testing

 Experimental Test Setup Verification

 Basic Mechanisms Studies
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TPA Dosimetry − Summary

• Dosimetry methodology for TPA SEE 

developed, implemented, and verified

• Three online beam monitors

• Laser pulse energy

• Laser pulse width

• Focused spot size
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Khachatrian, et al., “A Dosimetry Method for Two-Photon Absorption Induced 

Single-Event Effects Measurements,” IEEE TNS December 2014. 
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TPA Dosimetry − Summary

• Dosimetry methodology for TPA SEE 

developed, implemented, and verified

• Three online beam monitors

• Laser pulse energy

• Laser pulse width

• Focused spot size

• Capabilities:

• Monitor and correct fluctuations in laser 

system operating point 

• Set system to predefined operating point

• Correlation of different experiments
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What Happens Inside the Silicon?

• Need exists for understanding 

quantitatively the carrier density 

distribution in TPA SEE experiments

• Complicated problem

• Community has been relying on a 

“Zeroth Order” representation

• Only considers carrier generation

• Neglects all all other effects

• NRL has initiated a program to 

address this problem
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• Produce a software program that can accurately simulate the 

TPA-induced carrier deposition profile in silicon for any given 

set of experimental conditions (Practical Goal)

• Simulate/predict impact of various optical nonlinearities on the 

beam propagation through, and generation of free carriers in 

the medium (Scientific Goal)

• Validate results through experimental measurement

Goals:

• Numerical modeling using existing simulation software (NLO-

BPM) adapted for carrier generation and applied to silicon 
[Kovsh, et al., Applied Optics, 38, 1568 (1999)]

[Hales, et al., IEEE TNS, 62, 1-8 (2015)] 

Approach:

NRL TPA Modeling
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Experimental Validation

	

*H. Urey, Applied Optics, 

vol. 43, pp. 620-625, 2004. 

SFWHM = KFWHM l f#

KFWHM = 1.036 

– 0.058Tr – 0.156/Tr
2

Hales, et al., TNS 2015
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Experimental Validation of NLOBPM

		

Silicon Bulk Diode Silicon EPI Diode

Observable: Charge-collection transient

 “Z” Dependence of collected charge
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RPP and Depth Profiles

• RPP model used to estimate collected charge 
• Preliminary collaborative TCAD analysis with Robust Chip Inc. shows good 

correlation with RPP model for bulk diode

• “CC z-scans” – depth profiles of integrated/collected charge as a function 

of axial or “z” position of focus – can be generated

Si

interface
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Experimental Geometries - TPA

DUT: 100xDosimeter
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Centronic Bulk Si Diode

RPP depth of 66 m >> charge profile size
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• Diode studied extensively via both TPA and SPA; detector used for 

dosimeter 

• Magnitudes, positions, trends of z-scans show good agreement

• Simulations narrower/more symmetric than experimental data; 

oversimplification of RPP?

Centronic Bulk Si Diode
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Jan 2017

Simulation consistently overestimates CC

Correlation Study: Centronic Bulk Diode

Jan 2015
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Impact of Surface Reflections

• Sims consistently 

overestimate CC

• Previously assumed 

perfect AR coating 

(R=0%) 

• Communication with 

Centronic yielded 

specific information on 

SiO2 AR coating and 

then calculated 

dispersion of reflectance 

• Significant reflectance 

found at all wavelengths
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January 2015 Data

Impact of Surface Reflections

Jan 2015 Jan 2015
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w0 = 0.89 m w0 = 1.27 mw0 = 0.93 m

Aug 2017Aug 2016 Jan 2015

DUT Position

w0 = 5.7 mw0 = 4.7 m

Mar 2016 July 2016

w0 = 2.9 m

Aug 2017

Dosimeter Position

Correlation Study: Centronic Bulk Diode
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Correlation Study: 

Sandia n+/p/p+ Epitaxial Diode

RPP depth of 2.3 m << charge profile size
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Correlation Study: 

Sandia n+/p/p+ Epitaxial Diode

• Well-defined charge collection depth

• Overall magnitudes, positions, trends of z-scans show good agreement

• Narrower scans peaked closer to z = 0 are reproduced by simulations
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Correlation Study: 

Sandia n+/p/p+ Epitaxial Diode
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Error Analysis:  SPA Measurements

o Simple analytic equations 

for SPA charge deposition 

allow for error analysis

o Horizontal error bars show 

systematic error in Qz

(13%), vertical error bars 

show random error in CC

values (10%) 

o Total error ( 16%, red 

lines) encompasses both

o Measurements from 

different sites with different 

charge distributions all lie 

within confidence intervals 

given by the total error

(1)
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   (1) (1)

max 1 expz RPPQ Q z  

SPA Data from: Buchner, IEEE TNS, 59, 988 (2012) 
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Laser-Ion Correlation - SPA

SPA Data from: Buchner, IEEE TNS, 59, 988 (2012) 

Laser Equivalent LET = Qz
(1)/z
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Laser-Ion Correlation - SPA

Data from: Buchner, IEEE TNS, 59, 988 (2012) 
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Laser-Ion Correlation - TPA
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Laser-Ion Correlation - TPA

Hales, et al., Presented at RADECS 2017
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Conclusions/Summary

• Validation of NLOBPM with experimental data continues

• Quantitative agreement with experimental observables

• NLOBPM code is performing as hoped 

• Current Challenges/In Progress

• Integration with device simulators (TCAD)

• Application to more complex device structures

• Laser/Ion comparison is progressing

• Recent results (not presented)

• GaAs Diode

• GaN Diode

• SiGe Diode

• SiGe HBT

• GF 32 nm PD SOI NFET

• Analytical equations for integral CC (TPA and SPA)


