

SEE induced by heavy ions and laser pulses in Si Schottky diodes

RADLAS 2017

<u>M. Mauguet</u>^(1,2), D. Lagarde⁽²⁾, F. Widmer⁽¹⁾, N. Chatry⁽¹⁾, X. Marie⁽²⁾, E. Lorfevre⁽³⁾, F. Bezerra⁽³⁾, R. Marec⁽⁴⁾ and P. Calvel⁽⁴⁾

(1) TRAD – (2) INSA/LPCNO – (3) CNES – (4) Thales Alenia Space

Context of the study

- First destructive events in Schottky diodes : 2011 [Casey,2014]
- Laser tests for SEE sensitivity prediction or initial sorting
- Derating rules

Funding

- Framework : CNES (R&T)
- Tests & analysis : TRAD / INSA LPCNO / THALES Alenia Space
- Heavy ion beam-time : CNES / ESA

Objectives

- Laser / heavy ions comparison in simple structures
- Impact of optical parameters

Outline

- 1. Test methods
- 2. SEB in Schottky diodes
- 3. Heavy ion tests
- 4. Laser tests

Conclusion

Heavy ion tests performed at UCL and GANIL

• Low range tests: UCL

(Université Catholique de Louvain, Belgium)

High range tests: GANIL

(Grand Accélérateur Nat. d'Ions Lourds, France)

Laser tests performed at TRAD laser facility

- Laser
 - Active Q-switched
 - Wavelength 1.064µm
 - Pulse duration 400ps
 - Single shot to 50kHz
 - Beam waist 0.9μm, **1.3μm**, 4μm
- 3-axis motorized linear stages
- Visible camera + 850nm positioning laser

TRAD Laser facility LISA (<u>Laser Irradiation tool for SEE Analysis</u>)

Heavy ion tests performed at UCL and GANIL

• Low range tests: UCL

(Université Catholique de Louvain, Belgium)

High range tests: GANIL

(Grand Accélérateur Nat. d'Ions Lourds, France)

Laser tests performed at TRAD laser facility

- Laser
 - Active Q-switched
 - Wavelength 1.064µm
 - Pulse duration 700ps
 - Single shot to 50kHz
 - Beam waist 0.9µm, 1.3µm, 4µm
- 3-axis motorized linear stages
- Visible camera + 850nm positioning laser

Test set-up

- Single Measure Unit
 - Polarization and leakage current measurements
 - Resolution : < 250ms
- No additional capacitor or resistance
- Identical for both heavy ion and laser tests

TRAD Laser facility LISA (Laser Irradiation tool for SEE Analysis)

Devices tested : planar and trench Si Schottky diodes from OnSemiconductor

MBRF10L60CTG V_{RRM}=60 V (max reverse voltage)

<u>Planar</u> structure

« Classical » diode structure

NTST20120CTG V_{RRM}=120 V (max reverse voltage)

<u>Trench</u> structure

A new electric field distribution to improve electrical performances

Schottky contact

SEB in <u>reverse polarized planar</u> Schottky diodes (heavy ion tests)

[George,2013] [Theiss,2015] [Casey,2017]

Charge injection

Impact ionization

Local temperature increase

► Thermal runaway → local fusion

[Casey,2017]

Highest electric field regions \rightarrow probable sensitive areas

- Heavy ion testing
 - Destructive events at <u>low</u> range (< 300µm)
 - Planar diode from LET = 45MeV.cm².mg⁻¹ @ V_R = 100% V_{RRM}
 - Trench diode

from LET = 20MeV.cm².mg⁻¹ @ V_R = 90% V_{RRM}

 \rightarrow Trench = more sensitive

- Destructive events at <u>high</u> range (> 300µm)
 - Increase of the sensitivity → anode/cathode electrical short circuit ?

Xe : LET = 32.4MeV.cm².mg⁻¹

Ref.	LOW RANGE	HIGH RANGE
Planar MBRF10L60CTG	PASS @ 100%V _{RRM}	FAIL @ 100%V _{RRM}
Trench NTST20120CTG	PASS @ 75%V _{RRM}	FAIL @ 75%V _{RRM}

 V_{RRM} : max. reverse voltage

Test conditions

Test conditions

Space

Tests & radiations

TOULOUSE

CENTRE NATIONAL

ThalesAlenia HI vs laser tests

Transient photocurrent measurements <u>below SEB threshold</u>

Decoupled power supply, 4GHz oscilloscope connected with SMA cable

- Average transient duration @1/e²
- Average collected charge @1/e²
 - Mainly from drift currents
 - \rightarrow linked with destructive events
- Dependence on energy, focusing depth, reverse voltage

Tests & radiations Instance Internet Space Internet Space

Collected charge : <u>laser energy</u> dependence

 $\lambda = 1.064 \mu m$

 $N_{\rm D} < 10^{17} \, {\rm cm}^{-3}$

→ two photon absorption **negligible**

(10¹⁰ times less than single photon abs.)

 \rightarrow intraband absorption **negligible**

→ main absorption process = single photon absorption linear dependence with energy

Laser focusing depth dependence

Collected charge mainly due to
drift currents (in the depletion region)

Analysis

Focusing depth close to the depletion region
Maximization of drift currents

- → transport efficiency increase
- \rightarrow charge velocity increase (electric field)
- \rightarrow potential impact ionization

Increase of collected charge (+50%) Decrease of transient duration (-5%)

Laser test : reverse voltage dependence (focusing depth = depletion region)

TOULOUSE

Tests & radiations

ThalesAlenia

TRAD, Tests & Radiations

Reverse voltage

dependence

14

Laser testing in PLANAR diode

- Collected charge < 25 times less than expected (< 0.1pC)
 - \rightarrow No destructive event

Laser testing in TRENCH diode

- Critical parameters to trigger events :
 - Energy, reverse voltage, A focusing depth
- Reproducible destructive events at 36.5nJ/pulse @100% V_{RRM}
- Comparison with heavy ion tests :
 - Destructive signature comparable to heavy ions

Laser energy above SEB threshold

TRAD, Tests & Radiations

Low range High range

ions ions

One-photon laser testing for Si Schottky diodes

- Reproducible destructive events
- Comparison with heavy ion test results
 - Destructive signature
 - Electrical parameters
- Important impact of doping levels and structures

Further studies for <u>heavy ions / laser correlation</u>

- Transient measurements during heavy ion tests
 - LET / laser energy SEB threshold
- TCAD with photogeneration and transport model
 - To further understand laser test results
- Laser tests
 - Spatial sensitivity study
 - Other planar and trench references

Thank you

Questions?

Additional material

Heavy ion test results

Performed at UCL (Université Catholique de Louvain, Belgium)

Photogenerated collected charge

- Based on an SPA analytical model from [Buchner,2013]
- Funneling extension and collection efficiency neglected
- Collected charge : a few pC

