

Temasek Laboratories@NTU

Integrated pulsed laser scanning microscope system at NTU, Singapore

Samuel CHEF¹, Chung Tah CHUA^{1,2}, Philippe Perdu^{1,3}, Chee Lip Gan^{1,2}

¹Temasek Laboratories @NTU, Nanyang Technological University, Singapore
 ²School of Materials Science & Engineering, NTU, Singapore
 ³CNES, Toulouse, France
 09 Oct 2017

Space industry landscape in Singapore

COTS Devices in Space Applications

- Small satellites (micro, nano, pico, etc) => Shorter Development Time/Lower cost => COTS?
- COTS Devices for space applications:
 - High volume manufacturing => Cost/performance ratio optimization ©©©
 - Most advanced technologies => Higher payload capacity
 ©©©
 - Not designed nor qualified for space applications ⊗⊗⊗
 - Essentially a Black-Box ⊗⊗⊗
- Laser testing of COTS:
 - No information on design => Is the area under test relevant?
 - No international standard procedure => Is the test procedure relevant?

Strategies for laser SEE testing setup

Type of System	SEE Custom/DIY	SEE Commercial
Development Time	8	\odot
Development Cost	\odot	$\overline{\mathfrak{S}}$
Flexibility/Evolutivity	\odot	$\overline{\mathfrak{S}}$
Maintenance	8	\odot
Legacy	8	\odot

- SEE testing => Small market
- FA System:
 - Long Legacy
 - Various analysis capabilities
- Typical Optical FA system:
 - Microscope (Bright field or CLSM)
 - Laser Sources
 - NIR Sensor

Why not integrate SEE capabilities to standard FA system?

NTU Pulsed Laser SEE setup

NTU Pulsed Laser SEE setup

Parameter	Description
Wavelength	1064 nm
Pulse width (FWHM)	10 ps
Pulse energy	Up to 11 nJ (at source)
Repetition rate	Single shot to 50 MHz
Sync	Possible with DUT clk

System Evaluation: Test Replication

EXAMPLE OF APPLICATIONS

Test of LVDS Buffer

Test of LVDS Buffer: Laser vs heavy ion

Test of LVDS Buffer

SYNERGY BETWEEN TECHNIQUES

Synergy of techniques : SEL Analysis

Laser Timing Probe

- Latch-up triggered at 90 pJ with scan at 10 kHz
- Seems to be maintained by sinking from the function generator
- Lower suceptibility with internal oscillator

[S.Chef, C.L.Gan, et al, to be presented at ISTFA 2017]

Synergy of Techniques: Identification of areas of interest

Irradiation at 480 pJ

Irradiation at 2 nJ

- Laser probing helps in identifying areas of interest
- Bring additional information about test procedure

Summary and conclusion

- SEE laser test system in NTU
 - Customization of a standard FA system
 - Brings multiple analysis capability
- FA optical analysis techniques can be used for
 - Additional information on the DUT
 - Perform FA during laser generated fault (SEE)
 - Improve knowledge on the way to perform laser SEE

