

Structural pattern extraction from asynchronous two-photon laser fault injection using spectral analysis

V. Pouget¹, S. Jonathas², R. Job¹, J.-R. Vaillé¹, F. Wrobel¹, F. Saigné¹

¹ IES – CNRS, University of Montpellier ² PULSCAN

 IES | Institut d'Électronique et des Systèmes UMR 5214 - CNRS - UM Université de Montpellier 860, rue Saint Priest Bâtiment 5 - CC 05001 34095 Montpellier cedex 5 tel +33 (0)4 67 14 37 16 fax +33 (0)4 67 54 71 34 www.ies.univ-montp2.fr

Motivation (1/2)

- Pulsed laser testing is commonly used as an in-lab tool for Single-Event Effects sensitivity assessment & mapping
 - □ Among other applications: sensitivity pattern extraction for rate prediction
- Classical mapping approach:
 - Scanning + data acquisition
 - \Box 1 (x,y) point \Leftrightarrow 1 pixel of the mapping \Leftrightarrow 1 measurement
- As most optical microscope-based techniques, laser testing of recent technologies is particularly demanding in terms of mechanical stability
- In a noisy environment, mapping repeatability can be challenging
 Ex: Fan on the testboard, unstable air-cond., roadworks, wind in higher floors...

Motivation (2/2)

lies

Typical vibrations induced by fan on the testboard

□ This work: extracting structural information without mapping

Outline

- Device under test & set-up
- Testing method
- **Experimental results**
- Simulation
- Conclusions

Device under test

- XC7Z030 ZYNQ 7000 Programmable System on Chip (SoC)
 - TSMC HKMG 28nm CMOS process
 - Flip-chip lid-less package version provides easy access to the die backside
 - □ Substrate thickness: 700µm

Region of interest

- On-chip memory (OCM)
 - 256KB SRAM
 - Shareable by both cores
- Critical section from a radiationhardness assurance point of view when:
 - Used for cores synchronization
 - Used for software-level hardening
- Knowledge of the sensitive pattern required for event rate prediction

Laser testing set-up

ies

□ Two-photon absorption (TPA) microscope at IES

- □ All-fiber laser source
- □ Wavelength: 1.55µm
- Femtosecond pulses
- □ Infrared imaging system

DUT testing method

Self testing strategy

ies

- Real-time test software operates on one of the CPU cores
- □ The program initiates, then periodically reads the OCM, report & correct errors
- The program instructions and data are stored in an external memory
 - Test program not impacted by errors in the OCM

Asynchronous testing

- □ No synchronization between laser pulses, scanning motion and test loop
- **Test loop period:** $T_s = 150 ms$
 - Not affected by errors detection and reporting
- □ Laser pulse period: $T_L = T_S + \varepsilon$
 - □ At most one laser pulse per test cycle => no false Multiple Cell Upset
 - Laser arrival time in the cycle different for each pulse = time-domain scan
 - Periodically, one test cycle without laser
 - **Beating period:** $T_B = T_L T_S / (T_L T_S)$

Reminder: TPA-induced charge profile

- Limited extension of the charge track along the optical axis
- Non-linear propagation effects in thick substrate
- Wavelength different from imaging wavelength
- Solution => Offset between imaging focus and optimal laser focus

First steps: define optimal Energy and Focus

Depth scan

ies

□ In the following: constant energy of 500pJ (tolerance to focus variations)

2D scan of an area in the OCM

Area with high X/Y ratio

lies

- Continuous slow scan along X
- 100nm steps along Y
- □ Scan repeated in a loop

□ Logging the number of errors detected in each test cycle

ies

Error signal & noise sources

Error signal

Described by the convolution of laser charge profile with DUT sensitivity pattern

\Rightarrow Analysis in the frequency domain

Error signal in the frequency domain

Several strong peaks

□ Can some of them be related to a repetitive structure in the DUT ?

How to distinguish between time-domain and space-domain modulations ?

 \square \Rightarrow Repeat the same scan at a different speed

lies

Scanning at 2 different speeds

- □ Peaks at same freq. = time-domain modulations
- Peaks at twice the freq. = space-domain modulations = DUT structural pattern
 What are the corresponding dimensions ?

Plotting the results vs spatial period

- Convert frequencies into spatial periods using P = V / f
- Peaks at same period = DUT structural pattern
- Peak A = 1.25µm
 - **Subwavelength pattern resolved from vibrations without any DUT synchronization**

Modelling of the experiment

Calculating the dynamic convolution of the laser charge track with a 2D sensitivity pattern

- Using a simple critical charge model for event generation
- Including every time-related aspect of the experiment
 - Scanning speed
 - Laser pulse frequency
 - Real-time test loop for event detection
- Including various noise sources

Modelling results

ies

Minimum detectable pattern: d_{min} = 2 V T_S

- Pattern resolution not limited by spot size
 - □ No significant effect of the spot size on the spectrum

Conclusions

- Structural (sensitivity) pattern extraction from pulsed laser fault injection using slow scan and frequency-domain analysis of the error logs
- No synchronization required between laser, scanning and test equipment
- Sub-spot size and sub-wavelength periods extracted despite vibrations and multiple noise sources
- Accurate modelling of the scan timings shows limited effect of the spot size on the resolution
 - Resolution limited by speed, test loop period and detection mechanism (charge diffusion)
- Possible applications
 - Radiation effects: SEE sensitive pattern extraction
 - Security: reverse engineering for laser-based attacks
 - □ Failure analysis: pulsed laser stimulation techniques

Future work

- □ Working closer to the energy threshold to improve resolution
- □ Automate spectrum processing to reconstruct more complex patterns $(1D \rightarrow 2D)$