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Motivation (1/2)

 Pulsed laser testing is commonly used as an in-lab tool for Single-

Event Effects sensitivity assesment & mapping

 Among other applications: sensitivity pattern extraction for rate prediction

 Classical mapping approach:

 Scanning + data acquisition

 1 (x,y) point  1 pixel of the mapping  1 measurement

 As most optical microscope-based techniques, laser testing of recent

technologies is particularly demanding in terms of mechanical

stability

 In a noisy environment, mapping repeatability can be challenging

 Ex: Fan on the testboard, unstable air-cond., roadworks, wind in higher floors…
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 Typical vibrations induced by fan on the testboard

 This work: extracting structural information without mapping

Motivation (2/2)
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Outline

 Device under test & set-up

 Testing method

 Experimental results

 Simulation

 Conclusions

V. Pouget et al – ESREF2017



5

Device under test

 XC7Z030 ZYNQ 7000 

Programmable System on 

Chip (SoC)

 TSMC HKMG 28nm CMOS 

process

 Flip-chip lid-less package 

version provides easy access

to the die backside

 Substrate thickness: 700µm

V. Pouget et al – ESREF2017

Programmable Logic 
(Kintex FPGA)

Processing 
system 
(2 ARM 
cores)



6

Region of interest

 On-chip memory (OCM)

 256KB SRAM

 Shareable by both cores

 Critical section from a radiation-

hardness assurance point of view

when:

 Used for cores synchronization

 Used for software-level hardening

 Knowledge of the sensitive pattern 

required for event rate prediction
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Laser testing set-up

 Two-photon absorption (TPA) microscope at IES

 All-fiber laser source

 Wavelength: 1.55µm

 Femtosecond pulses

 Infrared imaging system
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DUT testing method

 Self testing strategy

 Real-time test software operates on one of the CPU cores

 The program initiates, then periodically reads the OCM, report & correct errors

 The program instructions and data are stored in an external memory

 Test program not impacted by errors in the OCM

 Asynchronous testing

 No synchronization between laser pulses, scanning motion and test loop

 Test loop period: TS = 150ms

 Not affected by errors detection and reporting

 Laser pulse period: TL = TS + 

 At most one laser pulse per test cycle => no false Multiple Cell Upset

 Laser arrival time in the cycle different for each pulse = time-domain scan

 Periodically, one test cycle without laser

 Beating period: TB = TLTS/(TL-TS)
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Reminder: TPA-induced charge profile

 Limited extension of the charge track along the optical axis

 Non-linear propagation effects in thick substrate

 Wavelength different from imaging wavelength

 => Offset between imaging focus and optimal laser focus 

V. Pouget et al – ESREF2017
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First steps: define optimal Energy and Focus

 Depth scan

 Counting errors vs Z position, for different energies

 In the following: constant energy of 500pJ (tolerance to focus variations)
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2D scan of an area in the OCM   

 Area with high X/Y ratio

 Continuous slow scan along X

 100nm steps along Y

 Scan repeated in a loop

 Logging the number of errors detected in each test cycle
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Error signal & noise sources

 Error signal

 Described by the convolution of laser charge profile with DUT sensitivity pattern
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Error signal in the frequency domain

 Several strong peaks
 Can some of them be related to a repetitive structure in the DUT ?

 How to distinguish between time-domain and space-domain modulations ?

  Repeat the same scan at a different speed
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Scanning at 2 different speeds

 Peaks at same freq. = time-domain modulations

 Peaks at twice the freq. = space-domain modulations = DUT structural pattern
 What are the corresponding dimensions ?
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Plotting the results vs spatial period

 Convert frequencies into spatial periods using P = V / f 

 Peaks at same period = DUT structural pattern

 Peak A = 1.25µm
 Subwavelength pattern resolved from vibrations without any DUT synchronization
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Modelling of the experiment

 Calculating the dynamic

convolution of the laser

charge track with a 2D

sensitivity pattern

 Using a simple critical charge

model for event generation

 Including every

time-related aspect

of the experiment
 Scanning speed

 Laser pulse frequency

 Real-time test loop for event detection

 Including various noise sources 

 Allows for quick estimation of the influence of experimental parameters
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Modelling results

 Minimum detectable pattern: dmin = 2 V TS

 Pattern resolution not limited by spot size

 No significant effect of the spot size on the spectrum
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Conclusions

 Structural (sensitivity) pattern extraction from pulsed laser fault injection using 

slow scan and frequency-domain analysis of the error logs

 No synchronization required between laser, scanning and test equipment

 Sub-spot size and sub-wavelength periods extracted despite vibrations and 

multiple noise sources

 Accurate modelling of the scan timings shows limited effect of the spot size on 

the resolution
 Resolution limited by speed, test loop period and detection mechanism (charge diffusion) 

 Possible applications
 Radiation effects: SEE sensitive pattern extraction

 Security: reverse engineering for laser-based attacks

 Failure analysis: pulsed laser stimulation techniques

 Future work
 Working closer to the energy threshold to improve resolution

 Automate spectrum processing to reconstruct more complex patterns (1D  2D)
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