

Laser testing and analysis of SEE in DDR3 memory components

P. Kohler, V. Pouget, F. Wrobel, F. Saigné, P.-X. Wang, M.-C. Vassal

RADLAS 2017

 IES | Institut d'Électronique et des Systèmes UMR 5214 - CNRS - UM Université de Montpellier 860, rue Saint Priest Bâtiment 5 - CC 05001 34095 Montpellier cedex 5 tel +33 (0)4 67 14 37 16 fax +33 (0)4 67 54 71 34 www.ies.univ-montp2.fr

pkohler@3d-plus.com

www.ies.univ-montp2.fr

Pierre Kohler

2

Context & Motivation

- Dynamic memories (DRAMs) widely used in space applications for mass storage
- DDR3 are now being considered for space applications in the coming years
 - Clock frequency up to 1066 MHz (2133 Mbps)
 - Capacity up to 8 Gb
- Interest for identification of a new radiation tolerant component in order to integrate it in space modules
 - DDR3L : Low power DDR3 interesting for energy saving at module level

→ NSREC 2017 - "Analysis of Single-Event Effects in DDR3 and DDR3L SDRAMs using

Laser Testing and Monte-Carlo simulations"

What about DDR3L radiation effects sensitivity?

SEE, TID...

Methodology optimization

Outline

- Devices under study
- Experimental setup
- Laser testing results
- Monte-Carlo simulation
- Conclusion

Devices under study

• DUTs specifications

Sample	Memory type	Density	Max clock frequency	Supply voltage
Α	DDR3	4 Gb	666 MHz	1.5 V
В	DDR3/L	2 Gb	933 MHz	1.35 / 1.5V
С	DDR3/L	4 Gb	800 MHz	1.35 / 1.5V

Sample preparation

- DUTs are mounted in **flip-chip** FBGA plastic package
- The plastic is removed by acid attack to provide access to the silicon substrate backside

Test bench hardware overview

- Test bench specifications
 - Controlling DDR3/L SDRAMs under irradiation
 - DUTs clock frequency up to 800 MHz
 - Up to 8 DUTs
 - Parametric tests
 - Data retention time test
 - Power consumption monitoring
 - Functional tests
 - Read/write periodic cycles
 - Individual current limiting (Delatcher)

5

IES | Institut d'Électronique et des Systèmes

- Scan along Z axis to find the most sensitive ٠ depth
- 2D mapping of SEU to descramble the memory organization

the University of Montpellier

_

Laser testing facility

Estimated TPA induced charge track FWHM : 0.7 μm

2-photon laser facility of the IES lab of

- Test procedure
 - Tests were performed at 400 MHz
 - Standard 64 ms auto-refresh interval was used (except for specific test modes)
 - Laser testing methodology
 - Starting with low pulse energies to observe non-٠ destructive event
 - Gradual increase of laser energy to measure SEE ٠ threshold

6

Laser testing results Memory organization

- Memory array organization
 - All DDR3 SDRAMs are divided in 8 banks
 - Banks in DUT A and C are divided in 4
 blocks
 - Banks in DUT B are divided in 2 blocks
 - Each block is divided in sub-blocks

Sub-blocks description

DUT	Size X [µm]	Size Y [µm]	Sub-blocks /row	Sub-blocks /col	Estimated bit size [nm ²]
Α	100	50	8	33	104
В	68	51	12	33	104
С	72	43	8	27	5.10 ³

• Data bits organization

- Descrambling : Correspondence between corrupted logical address and laser spot position
- 3 tested devices exhibit very different scrambling strategies
 - For DUT A and B : the 8 bits of a same word are distributed into several sub-blocks
 - For DUT C, 4 bits of a same word are located in the same sub-block → More prone to MBU

IES | Institut d'Électronique et des Systèmes

www.ies.univ-montp2.fr

8

Laser testing results SEE laser energy thresholds

- SEU and SEFI laser energy threshold measurement
 - SEU_{TH} for 0x00 pattern and the SEFI_{TH} are roughly the same for the 3 DUTs
 - SEU_{TH} for the 0xFF pattern differs by a factor 3 between DUT A and B
 - In low power mode SEU_{TH} is substantially lower than in normal power mode (≈ 60%)

Laser testing results SEU/SEFI thresholds comparison

- Unexpected result : Important ratio between SEU and SEFI thresholds
 - Contrary to what was observed under heavy ions in previous works¹
 - May be explained by the buried word-line (bWL) technology cell architecture
 - The small pitch of the bWLs (56 to 80 nm) may act as a partially reflecting virtual metal layer

¹ M. Herrmann et al, "New SEE and TID test results for 2-Gbit and 4-Gbit DDR3 SDRAM devices RADECS, 2013

www.ies.univ-montp2.fr

9

- Laser pulse energy increase → MCU multiplicity increase
- 2 phenomena may explain the significant rise of the multiplicity
 - The effective laser spot size expands with energy
 - Total amount of charge generated by photoelectric effect increases with laser energy → diffusion towards adjacent cells
- These results may constitute behaviors under heavy ions with high LET or at grazing incidence
- Specific behavior of DUT C : with pattern 0xFF, damage threshold and correctable SEU threshold are nearly the same

10

Laser testing results Atypical upset occurrence - Observation

- **Observation** : Even above SEE threshold, sporadic events detection
 - Read cycle range : 1 to 10s
 (depending on the address range)
 - Laser pulse period : 100 ms (much larger than the refresh period)

• <u>Definition</u> : **SEE detection period** is the SEE average time between two SEE observations

Laser testing results Atypical upset occurrence - Hypothesis

- **Hypothesis** : Existence of a critical time window for generating SEUs
- From previous works¹²
 - Bit-line upset : bit-line disturbance occurring during a specific read or refresh cycle state when bit-lines are placed in a floating state

Critical time window

¹G. Schindlbeck, "Types of soft errors in DRAMs," RADECS, 2005 ²A. Bougerol, F. Miller and N. Buard, "SDRAM Architecture & Single Event Effects Revealed with Laser", IOLTS 2008

www.ies.univ-montp2.fr

Laser testing results Evidence for bit-line upsets

- Highlight of the critical window for SEUs in the memory array using laser testing tool
 - SEU detection period vs laser pulse period (at T_{REFRESH} = 32 and 64 ms)
 - \rightarrow Max of T_{SEE} when T_{LASER} = k x T_{REFRESH}
 - ➔ Existence of a vulnerable time window within each refresh cycle

- SEU threshold vs laser pulse period supports this hypothesis
- SEU_{TH} remains constant, regardless of the laser pulse period
 - These upsets are not induced by charge integration during several consecutive pulses

13

¹K. Grürmann et al., "Heavy Ion Sensitivity of 16/32-Gbit NAND-Flash and 4-Gbit DDR3 SDRAM," 2012 REDW

- Monte-Carlo Simulation
 - Comparison of heavy ion SEU data obtained on DUT A in previous work¹ and Monte-Carlo simulation
 - Simulation of **only cell upsets** performed with MC-Oracle
 - Bits size and organization estimated from values obtained with IR camera and laser irradiation tool
 - We observe a good fit above 20 MeV.cm²/mg
 - Lower part of the heavy ion data seems to confirmed the occurrence of bit-lines upsets
 - Lower threshold due to larger collecting nodes
 - Low cross-section due to the critical time window and refresh period ratio

Conclusion

- Laser testing and analysis of SEE in DDR3 memory components from 3 different manufacturers using two-photon laser testing
- Specific test bench developed and validated during experimental TID, HI and laser test campaigns
- Laser testing results
 - Extraction of physical and technological information (bit, array organization)
 - SEU/SEFI thresholds measurement and comparison
 - MCU multiplicity vs laser energy
 - Demonstration of the occurrence of bit-line upsets
- Laser good complementarity tool before HI experiments and for extracting important information for SEE assessment

Thank you for your attention

15

Backup slides

DRAM principles

Standard DRAM architecture

www.ies.univ-montp2.fr

Hardware design architecture

ies cars 🔗

www.ies.univ-montp2.fr

Software Architecture

Single-Event Effects

- Algorithm proposed to classify Single-Event Effects :
 - SEL monitoring runs in parallel
 - Identify SEU, Multiple upsets, stuck bits and different types of SEFIs
 - Reveal errors in control registers
- The algorithm should evolve depending on the test results

20

www.ies.univ-montp2.fr

Software development

- Use of the two processors available in the Zynq module
 - CPU0 functions
 - Parse ethernet user commands
 - Control test program sequences
 - Unqueue events reports stored in a FIFO
 - CPU1 functions
 - Manage DUTs read/write accesses
 - Check/correct SEUs
 - Report events in a FIFO
- CPU1 pre-processing
 - In order to prevent FIFO flooding
 - Add MBUs detection and correction functions
 - Add SEFIs detection functions
- Shared memory stores test parameters and commands sent from CPU0 to CPU1

